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Abstract—The proliferation of Internet of Things (IoT) devices
necessitates highly flexible and efficient network infrastructures,
with Service Function Chaining (SFC) playing a crucial role
in delivering customized network services. While Intent-Based
Networking (IBN) simplifies network management by translat-
ing high-level intents into configurations for SFC placement,
current state-of-the-art solutions are predominantly reactive.
They struggle with the unpredictable dynamism and resource
heterogeneity of IoT traffic, the semantic gap in intent translation,
and a fundamental lack of proactive adaptation, leading to
suboptimal resource utilization and compromised Quality of
Service. To address these critical challenges, this paper proposes
a novel proactive intent-driven SFC placement framework for
dynamic IoT networks. Our solution synergistically integrates
a Transformer-based module for accurately predicting future
network intents and resource demands, an LLM-driven module
for robustly translating complex natural language intents into
precise network configurations, and a Reinforcement Learning
(RL) agent for adaptive and optimal SFC deployment. We
aim to demonstrate the efficiency of our proposed framework
through comprehensive evaluations focusing on SFC acceptance
rate, long-term revenue-to-cost (LRC), and resource allocation
efficiency, including ablation studies to quantify the individual
contributions of the prediction and translation modules.

Index Terms—SFC placement, IBN, IoT resource allocation,
transformer, large language model

I. INTRODUCTION

THE rapid proliferation of Internet of Things (IoT) devices
across various domains, from smart cities and indus-

trial automation to healthcare and connected vehicles, has
fundamentally transformed network landscapes [1][2]. This
pervasive connectivity generates unprecedented volumes of
diverse data, necessitating highly flexible, scalable, and effi-
cient network infrastructures [3]. Within this context, Service
Function Chaining (SFC) has emerged as a crucial paradigm.
SFC allows for the dynamic creation of ordered sequences
of Virtual Network Functions (VNFs) (e.g., firewalls, load
balancers, intrusion detection systems) that process network
traffic to deliver customized services [4][5]. The efficient
placement of these SFCs, which involves optimally mapping
virtual functions and their interconnections onto the underlying
physical network resources while satisfying various constraints

Zijie Huang is with the College of Computer and Cyber Security, Fujian Nor-
mal University, Fuzhou, 350117, China, and Faculty of Science and Engineer-
ing, School of Electrical, Electronic and Mechanical Engineering, University
of Bristol, Bristol, BS8 1TR, United Kingdom (email: z.huang@bristol.ac.uk).
Hui Lin, Lizhao Wu are with the College of Computer and Cyber Security, Fu-
jian Normal University, Fuzhou, 350117, China, Email: linhui@fjnu.edu.cn,
melowlz@yeah.net.
Corresponding authors: Hui Lin, Lizhao Wu.

(e.g., latency, bandwidth, CPU), is critical for ensuring the
performance and reliability of these services. Complementing
SFC, Intent-Based Networking (IBN) represents a significant
evolution in network management [6]. IBN shifts the focus
from low-level, imperative network configurations (specifying
“how” to do something) to high-level, declarative business ob-
jectives or “intents” (specifying “what” needs to be achieved)
[7]. By abstracting the underlying network complexities, IBN
aims to simplify network operations, enhance automation, and
align network behavior directly with business goals. Within the
IoT context, where service requirements are highly variable
and often domain-specific, an intent-driven approach offers a
promising pathway to more context-aware and responsive SFC
placement [8]. This paradigm shift toward declarative network
management paves the way for integrating self-awareness into
orchestration systems, thereby enhancing automation, adapt-
ability, and efficiency in dynamic IoT networks.

Followed by the above technologies background, several
approaches have been proposed recently to advance SFC
placement efficiency with IBN. For instance, Leivadeas and
Falkner [9] propose to translate network service requirements
from the users via IBN into VNF deployment solutions.
Their solution presents automatic configuration of the network
service, and high quality of service and security requirements.
Similarly, Avgeris et al. proposed an automatic orchestration
of network services in IBN enabled SFC [10]. Their method
dynamically reassigning incoming intents among the asso-
ciated SFCs to proactively execute corrective actions. Their
experimental results demonstrate that they can assure high
application probability and minimize QoS violations.

However, a key limitation of this current state-of-the-art in
IBN-enabled SFC placement is its predominantly reactive na-
ture. While these systems automate deployment based on cur-
rent intents, they generally lack sophisticated mechanisms to
anticipate future network states, traffic fluctuations, or evolving
user demands [11]. This reliance on reactive adjustments
directly leads to several critical challenges, especially within
dynamic IoT networks. Firstly, the unpredictable dynamism of
IoT traffic, characterized by sporadic, bursty, and unpredictable
patterns driven by events and device mobility, renders static
or purely reactive SFC placement suboptimal, often resulting
in inefficient resource utilization, increased latency, or service
disruptions. Secondly, resource heterogeneity and constraints
in IoT deployments, involving a vast array of devices and edge
computing nodes with diverse and often limited resources,
present a complex resource allocation problem that reactive
approaches struggle to optimize effectively [12]. Thirdly, a
persistent semantic gap in intent management remains, as
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translating nuanced, high-level natural language intents (e.g.,
”ensure ultra-low latency for critical sensor data”) into precise,
executable SFC configurations is challenging due to ambiguity
and context-dependency, limiting the full potential of intent-
driven automation [13]. Consequently, the lack of proactive
adaptation means that most existing systems merely react to
network changes or new service requests, failing to optimize
SFC placement in anticipation of future conditions, which
leads to delays in service provisioning and suboptimal per-
formance during peak loads or unexpected events. Finally,
the scalability and real-time decision-making demands of the
immense scale of IoT devices and the need for immediate
responsiveness in dynamic environments necessitate placement
solutions that can make rapid, intelligent decisions without
prohibitive computational overhead, a requirement often unmet
by current reactive frameworks.

To tackle the challenges outlined above, we propose a
proactive intent-driven SFC placement solution, which inte-
grates Transformer-based intent prediction, LLM-driven in-
tent translation, and Reinforcement Learning (RL)-Agent for
dynamic SFC deployment in IoT networks. This solution
aims to achieve efficient and intelligent real-time decision-
making of SFC placement in dynamic IoT networks. The main
contributions of our work are are summarized as follows:

• To overcome the unpredictable dynamism of IoT traffic
and the lack of proactive adaptation, we leverage Trans-
former to analyze IoT physical network infrastructure
(e.g., topology, real-time available resources), and histor-
ical intent requests to accurately predict future network
intents and resource demands. This proactive forecasting
capability allows the system to anticipate changes and
prepare the network for upcoming service requirements.

• To bridge the semantic gap in intent management, we em-
ploy Large Language Model (LLM) to bridge the seman-
tic gap between human-expressed intents and machine-
executable network configurations. The LLM component
translates high-level natural language intents into detailed
SFC policies and VNF parameters, handling contextual
nuances and generating precise, structured deployment
instructions.

• We demonstrate the efficiency of our proposed solution
by evaluating it from three aspects: SFCs placement
network performance, efficiency of LLM adoption for
intent translation, and ablation study for transformer-
based intent prediction.

The remainder of this paper is organized as follows. Section
II presents related work. Section III formulates the system
model and objective. In Section IV, we elaborate our frame-
work. Experimental results and analysis are conducted in
Section V. Finally, Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

A. SFC Placement in Intent-Based Networking Frameworks

More and more recent works are aiming to automate the
complex process of SFC deployment based on high-level
intents. For instance, Chowdhury proposed an end-to-end
network management and user intent-aware intelligent network

resource-slicing scheme for SFC-based network application
[14]. They considered different intents such as time-first and
cost-first based on resource-slicing policies for Zero Touch
Network-based 6G application. Their experimental results
presented a 11.52% service monetary gain, and a 6.15%
energy gain. Subsequently, Avgeris et al. proposed an au-
tomated network assurance model to guarantee the Quality
of Service (QoS) and security requirements of IBN-enabled
SFCs in IoT and 5G network service background [8]. A
model predictive control-based algorithm is introduced to
proactively and optimally assign the incoming intents among
the available SFCs. Their experimental results demonstrated
that their method can maximize the Service-Level Agreement
satisfaction, and minimize QoS violations. Furthermore, to
achieve intent-oriented applications in network slicing, Zou et
al. proposed a hypergraph theory to realize the customization
of network service application intents, which is able to link the
application intents with network slicing strategies [15]. Their
method presented significant enhancement on user acquisition
precision, network resource optimization, and customization
of slice generation improvement.

While these IBN-enabled SFC placement solutions offer
improved automation and management simplicity compared to
traditional methods, they predominantly remain reactive. They
respond to new intents or detected network state deviations,
lacking the inherent foresight to anticipate future demands or
potential network issues. This reactive nature, particularly in
the face of the unpredictable dynamism of IoT traffic, leads to
suboptimal resource utilization and can hinder the achievement
of stringent QoS requirements.

B. Advanced AI/ML in Network Management

The increasing complexity and dynamism of modern net-
works have driven significant interest in applying advanced
Artificial Intelligence and Machine Learning techniques to
various network management tasks. Reinforcement Learning
(RL), in particular, has shown promise for dynamic resource
allocation and SFC placement problems [16][17][18], as
it allows agents to learn optimal decision-making policies
through interaction with the network environment. Beyond
deployment, AI (such as Transfer Learning, Graph Neu-
ral Network and Federated Learning and so on) has been
applied to network monitoring, cyber security, and traffic
classification [19][20][21][22][23][24]. More recently, LLMs
have demonstrated remarkable capabilities in natural language
understanding and generation, leading to their exploration in
network management for tasks such as natural language-to-
configuration translation. For instance, Tu et al. proposed an
Network Function Virtualization (NFV)-intent for in-context
learning in LLMs to perform the intent translation task [25].
Their experiment showed that the intent can be translated into
JSON configuration with high accuracy. Additionally, Alam
and Song also proposed an LLMs based-IBN to translate
high-level user intents into actionable network policies for
Space-Air-Ground Integrated Network (SAGIN) [26]. Their
experimental results presented a latency reduction, bandwidth
utilization improvement, QoS violations minimization, and
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SFC acceptance rate improvement. Furthermore, Mekrache
and Ksentini introduced an intent translation system based on
LLMs to convert natural language intents into network service
descriptors [27]. They trained an open-source LLM with few-
shot examples from a knowledge base, which is being refined
with a human feedback mechanism to improve the system’s
performance over time.

While these individual AI/ML techniques have significantly
advanced specific aspects of network operations, their inte-
grated and synergistic application, particularly for proactive
intent-driven SFC placement in highly dynamic IoT envi-
ronments, remains an underexplored area. Existing solutions
often lack the comprehensive foresight to truly anticipate
future demands and the flexible, human-centric translation
capabilities needed for diverse IoT service requirements.

C. Gap and Our Contribution
The above existing literature has made significant strides

in optimizing SFC placement and automating network man-
agement through IBN. However, a critical gap persists in the
ability of current IBN-enabled SFC placement solutions to
proactively adapt to the inherent dynamism of IoT networks.
Specifically, the reactive nature of current systems, coupled
with the challenges of accurately translating nuanced human
intents and efficiently deploying SFCs in real-time within
resource-constrained IoT environments, necessitates a more
intelligent and anticipatory framework. Our work directly
addresses this gap by proposing a novel framework that
integrates Transformer-based intent prediction, LLM-driven
intent translation, and RL-Agent for dynamic SFC deploy-
ment. This unique combination enables truly proactive network
management, anticipating future demands and optimizing SFC
placement to ensure superior performance and resource effi-
ciency in dynamic IoT networks.

III. SYSTEM MODEL & PROBLEM FORMULATION

A. IoT Network Infrastructure
We consider a heterogeneous IoT network infrastructure

represented as a graph GP = (NP , LP ), where NP is the
set of physical nodes and LP is the set of physical links
connecting them. The physical nodes n ∈ NP represent
diverse computing resources distributed across the network.
Each physical node n is characterized by its available compu-
tational capacity, denotes as CCPU

n (numbers of CPU cores),
CMem

n (size of memory in GB), and CGPU
n (numbers of GPU

cores). Each physical link l ∈ LP is characterized by its
available bandwidth capacity Bl. We assume that LP includes
both wired and wireless connections, reflecting the diverse
connectivity options in IoT environments.

On top of the physical infrastructure, VNFs are deployed
as software instances. Each VNF vi has specific resource
requirements, including rCPU

vi (CPU demand), rMem
vi (memory

demand), and rGPU
vi (GPU demand). Multiple instances of

the same resource required VNF can be deployed across
different physical nodes, subject to their available capacities.
Meanwhile, SFCs Sk are defined as an ordered sequence
of these VNFs vi ∈ Sk that collectively provide a network
service.

B. Objective Function

The primary objective of our proactive intent-driven SFC
placement framework is to maximize the overall long-term
value generated by placing SFC requests in dynamic IoT
networks, while efficiently utilizing network resources. This
involves optimizing for both current and predicted future
intents. Specifically, for a given time horizon T , our goal is to:
Maximize Long-term Revenue-to-Cost (LRC) and SFC Request
Acceptance Rate (RAC), while ensuring Resource Allocation
Efficiency. Let K be the set of all intents arriving or active
within the time horizon T . For each intent Ik ∈ K, let
ak ∈ 0, 1 be a binary decision variable indicating whether
SFC Sk derived from Ik is accepted and successfully placed
(ak = 1) or rejected (ak = 0). The objective function can be
formulated as:

Maximize O = LRC + RAC (1)

in which the LRC can be represented as:

RAC =

∑T
t=0

∑
Sk∈SK(t) REV (Sk)× ω∑T

t=0

∑
Sk∈SK(t) COST (Sk)× ω

(2)

where SK(t) is the set of all SFC requests arriving at
time slot t. ω is the lifetime of the current SFC request
Sk. REV (Sk) is the revenue generated by deploying this
current SFC Sk. COST (Sk) is the resource consumption in
the physical network due to the deployment Sk, which is
represented by the sum of the physical network node resources
and physical bandwidth resources scaled by path length. and
RAC is represented as:

LRC =

∑T
t=0 |Sk(t)|∑T
t=0 |SK(t)|

× 100% (3)

The objective function is subjected to various constraints.
Firstly, for every physical node n ∈ NP , the total CPU, GPU,
and memory demanded by all the VNFs placed on it must not
excceed its capacity:∑
v∈NV

k placed on n

rCPU,GPU,Mem
v ≤ CCPU,GPU,Mem

n ∀n ∈ NP

(4)
in the meanwhile, link capacity constraint also appears as node
capacity constraints: for every physical link l ∈ LP , the total
bandwidth demanded y all virtual links mapped to it must not
exceed its capacity:∑

(vi,vj∈LL
k ) mapped to l

bSk
vi,vj ≤ Bl ∀l ∈ LP (5)

on top of the physical and node capacity constraints, the
logical order of VNFs within an SFC must be preserved during
mapping to physical paths.

IV. THE PROPOSED METHOD

In this section, we demonstrate our proposed proactive
intent-driven SFC placement framework for dynamic IoT
networks. The proposed framework consists of three modules:
a LLM-based intent translation module, the transformer-based
intent prediction module, and the intent-based SFC placement
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Fig. 1: Proactive Intent-Driven SFC Placement Framework

mechanism. In what follows we first provide an overview
of the system architecture, followed by a comprehensive
description of its key components.

A. Framework Overview

Our proposed framework operates as a closed-loop intelli-
gent system designed to proactively manage and optimize SFC
placement in dynamic IoT environments. As depicted in Fig.
1, the system comprises several interconnected modules that
work synergistically to translate high-level user intents into
actionable network configurations, anticipate future demands,
and dynamically deploy SFCs. The workflow initiates with
the ingestion of high-level human-expressed network intent
request, such as “I need a network service to support 5 virtual
functions, requiring 10 units of CPU at node A and 20 Mbps
bandwidth on link B, ensuring low latency.”, which defines
the desired network service outcomes for IoT applications.
This ingested intent is then processed by an LLM model,
responsible for translating these natural language intents into
structured “Virtual Network Setting”, encompassing detailed
VNF parameters and SFC graph manners (such as parallel or
sequential structure). Concurrently, real-time physical network
status, including physical network topology and available
resources, alongside the translated intent data, are feeding
into a RL-Agent. The RL-Agent, acting as the intelligent
orchestrator, makes dynamic SFC placement decisions. A
continuous feedback loop is established where real-time per-
formance metrics and updated network state information from
the NFV Environment are fed back to the RL-Agent for
learning and policy refinement. Lastly, a crucial proactive

element is introduced by feeding the current translated intents
and physical network status will feed into a Transformer model
to predict future intents. This module provides essential fore-
sight improving the accuracy of subsequent intent predictions,
thereby ensuring a truly adaptive and optimized closed-loop
system.

B. LLM-based Intent Translation

The LLM-based Intent Translation module is responsible
for bridging the semantic gap between human-centric lan-
guage and machine-executable network configurations. Upon
receiving a high-level intent, the LLM processes this unstruc-
tured natural language input to extract all relevant entities
and parameters. This involves identifying the specific service
functions required, their logical ordering, and the associated
Quality of Service (QoS) constraints (e.g., latency thresholds,
bandwidth guarantees).

The LLM is designed to perform this translation by lever-
aging its advanced understanding of context and its ability to
generate structured output. It converts the qualitative and often
ambiguous intent into a precise “Virtual Network Settings”
object. This object includes: 1) A formal description of the
SFC, specifying the sequence of VNF types; 2) Detailed
resource requirements for each VNF instance (e.g., CPU,
memory, GPU).

Our proposed LLM-based Intent Translation significantly
enhances the usability and flexibility of the intent-driven
system, moving beyond rigid template-based approaches by
allowing operators to express complex requirements in a more
intuitive manner.
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TABLE I: Typical intents in NLU dataset

Intent Category Description Network Entities

Create Flow Simple

Create a network flow
between two endpoints with
optional constraints, such as

CPU, GPU, MEM, BW.

Mandatory: (source, target)
Optional: (CPU, GPU, MEM, BW)

Create Vnf Simple
Create a virtual network function
(if a functional one is currently

unavailable).

Mandatory: (vnf1)
Optional: (endpoint1, endpoint2, vnf2, vnf3)

Apply Filter Simple
Modify characteristics of a flow,

for example, allow and block
ports.

Mandatory: (action)
Optional: (port, source, target)

Create Flow+Create Vnf 2-composite
Mandatory: (source, target, vnf1)

Optional: (CPU, GPU, MEM, BW,
endpoint1, endpoint2, vnf2, vnf3)

Create Flow+Apply Filter 2-composite
Mandatory: (source, target, action)
Optional: (CPU, GPU, MEM, BW,

port, source, target)

Create Flow+Create Vnf+Apply Filter 3-composite

Mandatory: (source, target, vnf1, action)
Optional: (CPU, GPU, MEM, BW,

endpoint1, endpoint2, vnf2,
vnf3, port, source, target)

C. Transformer-based Intent Prediction

The Transformer-based Intent Prediction module is the
cornerstone of our proactive approach. Its primary function is
to anticipate future network demands and potential user intents
before they explicitly arrive, thereby enabling the system
to prepare and optimize resources in advance. This module
continuously analyzes a rich stream of historical and real-time
data, including: 1) Past intent requests and their characteristics;
2) Physical network status (e.g., available resources, topology).

The Transformer’s self-attention mechanism is particularly
well-suited for this task, as it can capture long-range de-
pendencies and complex temporal relationships within the
diverse input data. Unlike traditional time-series forecasting
models that might focus solely on numerical metrics, the
Transformer can also learn patterns related to the types of
intents and their associated attributes that are likely to emerge.
The output of this module is a set of “predicted intents,”
formatted similarly to the actual ingested intents, but with a
future validity period. These predictions provide the RL-Agent
with foresight into upcoming service requirements, allowing
for proactive resource reservation, VNF pre-instantiation, or
network path optimization. The accuracy of these predictions
directly impacts the system’s ability to minimize reactive
reconfigurations and maintain high performance.

D. Intent-based SFC Placement

The Intent-based SFC Placement module, powered by a RL
Agent, is responsible for making real-time, adaptive decisions
on how to map the SFCs (derived from both current and pre-
dicted intents) onto the physical network infrastructure. This
module operates within a Markov Decision Process (MDP)
framework, where: 1) State: The state space encompasses the
current “Physical Network Settings” (available CPU, GPU,
memory, bandwidth on nodes and links) and the “Virtual
Network Settings” (the characteristics of current and predicted
SFC requests, including VNF types, their sequence, and QoS

requirements); 2) Action: The RL-Agent’s actions involve
deciding which physical node to place a VNF instance on, and
which physical path to map each virtual link between VNFs.
In addition, the RL-Agent’s actions also decide whether to
accept or reject an SFC request if constraints cannot be met;
3) Reward: The reward function is designed to align with the
overall objective function Equation III-B.

The RL-Agent learns an optimal policy through continuous
interaction with the NFV Environment. It explores different
placement strategies and receives feedback (rewards) based
on the resulting network state and performance. This learning
process allows the RL-Agent to adapt its decision-making in
highly dynamic and uncertain IoT network conditions, effec-
tively balancing immediate demands with future requirements
predicted by the Transformer. The integration of predicted
intents into the RL state space enables the agent to make
proactive decisions, leading to more stable and efficient net-
work operations compared to purely reactive approaches.

V. EXPERIMENTS

Our experimental design encompasses both comparative
experiments and ablation experiments. In the comparative
experiments, we aim to observe the superiority of our pro-
posed method over baseline comparison methods. The ablation
experiments, on the other hand, are conducted to evaluate the
significance of each component within our proposed method.

A. Experimental Setup

1) Datasets: We utilize the NLU Dataset [?] as shown
in Table I. This dataset is a synthetically generated one and
is commonly employed for training and developing natural
language understanding models based on intent-driven net-
works. The dataset provides intent texts that describe common
network operations. These intent texts are expressed in English
and also encompass relevant network entities and attributes,
such as IP addresses, the number of CPU cores, and network
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TABLE II: Comparison Experiment

Method Limitation Metrics
BLEU↑ MDR↑ ROUGE-L↑ FEACI

Format↑ Explain↑ Accuracy↑ Normalized Cost↓ Normalized Inference↓

ChatGPT-4o + Prompt[ZERO] 0.413 0.653 0.465 0.00 0.00 0.00 0.100 0.102
+ KOR 0.343 0.534 0.324 0.983 0.342 0.452 0.234 0.123

+ Prompt[ONE] 0.532 0.783 0.437 0.755 0.643 0.642 0.334 0.331
+ Prompt[FEW] 0.236 0.833 0.593 0.954 0.957 0.843 1.00 0.944
+ GRAMMAR 0.433 0.682 0.432 0.993 0.354 0.331 0.342 0.945

Qwen3-32b + Prompt[ZERO] 0.455 0.774 0.342 0.00 0.00 0.00 0.00 0.102
+ KOR 0.599 0.541 0.449 0.954 0.344 0.483 0.00 0.122

+ Prompt[ONE] 0.313 0.853 0.593 0.86 0.775 0.874 0.00 0.323
+ Prompt[FEW] 0.656 0.943 0.599 0.955 0.974 0.934 0.00 0.983
+ GRAMMAR 0.549 0.674 0.483 0.996 0.314 0.328 0.00 0.954

Deepseek-v3 + Prompt[ZERO] 0.482 0.768 0.389 0.00 0.00 0.00 0.00 0.105
+ KOR 0.624 0.753 0.490 0.945 0.323 0.442 0.00 0.231

+ Prompt[ONE] 0.231 0.764 0.483 0.809 0.654 0.722 0.00 0.332
+ Prompt[FEW] 0.665 0.892 0.594 0.964 0.932 0.889 0.00 1.00
+ GRAMMAR 0.568 0.762 0.435 0.992 0.284 0.443 0.00 0.945

bandwidth. For example, “I need a virtual network with 5
virtual nodes and 8 virtual links, requiring 10 units of CPU
at node A and 20 Mbps bandwidth on link B, ensuring low
latency.”

TABLE III: Transformer Model Configuration

Parameter Value

Padding token index (source) 1
Padding token index (target) 1
Start-of-sequence token index (target) 2
Encoder vocabulary size 431
Decoder vocabulary size 431
Number of attention heads 8
Number of encoder/decoder layers 6
Dropout probability (hidden layers) 0.1
Total trainable parameters 44,800,943

2) Hyperparameters: We use Proximal Policy Optimiza-
tion (PPO) [28] for resource allocation, which is a popular
and empirically effective actor-critic algorithm known for its
stability and data efficiency, achieved by clipping the objective
function.

3) Transformer model: In this experiment, the Transformer
model we adopted is configured as shown in Table III. The
padding token indices for both the source and target sequences
are set to 1, while the start-of-sequence token index for the
target sequence is 2. Both the encoder and decoder have
a vocabulary size of 431. The model employs 8 attention
heads and consists of 6 layers for both the encoder and
decoder. A dropout probability of 0.1 is applied in the hidden
layers to prevent overfitting. The model contains a total of
44,800,943 trainable parameters. By leveraging multi-head
attention mechanisms and feedforward networks, this model
achieves efficient sequence-to-sequence task modeling.

4) Environment: In our experiment, we constructed a physi-
cal network environment. The specific experimental conditions
are as follows: For the network topology structure, we set the
number of nodes to 100 to simulate a medium-sized physical
network. The topology type selected was the Waxman model,
which can effectively simulate the non-uniform distribution
of nodes and the irregularity of connections in real-world

networks. For the computing resources of nodes, we defined
the values of this attribute are generated using a uniform
distribution. The value range is between 50 and 100. For the
bandwidth resources of links, we defined the values of this
attribute are also generated using a uniform distribution, with
a data type of integer, set to be generative, and a value range
between 50 and 100.

5) Metrics: We use following metrics in our experiments:
(1) Long-term Revenue-to-Cost Ratio (LRC). The LRC

evaluates the economic efficiency of the NFV-RA strategy by
comparing the cumulative revenue generated from accepted
VNs to the cumulative cost of the resources consumed for
their embedding over a period. A higher LRC signifies greater
profitability and resource efficiency. It is formulated as:

LRC =
Στ

t=0ΣI∈Î(t)REV (S)× w

Στ
t=0ΣI∈Î(t)COST (S)× w

(6)

where, S is the embedding solution for an instance I ,
REV (S) is the revenue generated by embedding VN gv ,
COST (S) is the resource consumption, w is the lifetime of
the corresponding VN.

(2) Average Solving Time (AST). The Average Solv-
ing Time (AST) measures the average computational time
(typically in seconds) an NFV-RA algorithm takes to find
a solution for a single VN request or simulation run. This
metric is crucial for assessing the algorithm’s efficiency and its
suitability for online, real-time decision-making environments.
Lower AST values are generally preferred, especially for
dynamic scenarios.

(3) Bilingual Evaluation Understudy (BLEU) score.
BLEU score is a commonly used automated evaluation metric
in the field of natural language processing, designed to mea-
sure the similarity between generated text and reference text.

BLEU = BP · exp

(
N∑

n=1

wn logPn

)
(7)

where BP is the brevity penalty factor. Pn represents the n-
gram precision between the generated text and the reference
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text. wn is the weight, which is typically assigned equally to
different n-grams.

(4) Manunal Double-check Rate (MDR). As LLMs
may generate multiple answers, we also conducted a man-
ual double-check finally , to judge if wrong intent are in-
cluded [29]. We calculate the accuracy by determining the
proportion of test intents that are correctly processed by the
LLM among a number of test intents, and use this accuracy
value as the value of the MDR.

(5) ROUGE-L: ROUGE-L is an NLP metric for evaluating
text generation quality, measuring similarity via the Longest
Common Subsequence (LCS). It focuses on content overlap
and fluency, balancing precision and recall through F1 scoring.
Unlike n-gram-based methods, it tolerates word order varia-
tions, making it robust for summarization and translation tasks.

(6) FEACI [30]: FEACI is a novel evaluation metric
designed to assess LLM-generated responses in intent trans-
lation/resolution tasks, addressing limitations of traditional
metrics like BLEU and ROUGE. It evaluates five key dimen-
sions: Format (structural correctness), Explanation (quality of
reasoning), Accuracy (value matching with references), Cost
(token-based pricing for closed-source models), and Inference
Time (response generation delay). Each dimension is scored
(0-1) and combined via weighted summation, where weights
reflect their relative importance. This holistic approach ensures
balanced evaluation of semantic understanding, practicality,
and efficiency, making it suitable for telecom and other
domain-specific applications.

B. Comparison Experiment

To ensure that the LLM outputs the requirements for config-
uring virtual networks in a fixed .Yaml format after interpreting
user intents, we employed four different methods to restrict the
model’s output:

• Prompt[ZERO]: Without providing any additional con-
textual information to the LLMs, we evaluate their ability
to generate technical intents in “standard” formats (e.g.,
3GPP and TMF specifications) under a zero-shot (ZERO-
shot) setting, where such formats may not have been
encountered during the model’s training phase.

• Prompt[ONE]: In Oneshot prompting scenarioswe pro-
vide additional examples including only the expected
response to the LLM models, explicitly specifying the
expected results in YAML format.

• Prompt[FEW]: In Few-shot prompting scenarios, we
provide LLM models with additional examples, explicitly
specifying the expected results in YAML format. More-
over, these examples further illustrate how to calculate
specific fields in the expected response based on the
technical intents outlined in the service order.

• GRAMMAR: Utilize grammatical rules to compel the
model’s output.

• KOR: Extract structured data from the text generated by
the LLM.

Moreover, we conducted tests using three different LLM
models:

• ChatGPT-4o: a cutting-edge model with enhanced con-
text understanding and multi-modal support.

• Qwen3-32b: a cutting-edge model with enhanced context
understanding and multi-modal support.

• Deepseek-v3: an advanced model optimizing response
accuracy and knowledge retrieval.

We send requests to these models via API interfaces, and they
typically possess more trainable parameters compared to the
open-source models locally deployed on our computing server.
We demonstrate the inference cost differences among various
large language models by comparing the expenses (in USD)
required to process 1 million input/output tokens.

In terms of the decoding strategy for language models
to generate network configurations, we employ temperature
sampling and nucleus sampling methods, with the temperature
parameter set to 0.2 and the top-p threshold set to 0.9. Table
IV lists the specific parameters of the LLMs used in this study.

TABLE IV: Comparison of Model Parameters

Parameter(s) GPT4-o Qwen3-32b Deepseek-v3
N-params 1760B 32B 67B
Open N Y Y
Attention heads 32 32 64
Attention layer(s) 128 32 80
Activation function SwiGLU SwiGLU SwiGLU
Cost In/Out (per 1M TK) $10/$30 $0/$0 $0/$0
Training Data Scale 13T tokens 3T tokens 8T tokens
Context Window 128K 32K 128K
Inference Speed (tokens/s) 120 350 200

Fig. 2: Comparison of total time and LRC between different
LLM models under the same user intent

Results Analysis: From the perspective of different restric-
tive condition methods, for the three LLM models, the Format
and Accuracy metrics perform better under the Prompt[FEW]
condition. Under the Prompt[ZERO] condition, they only
perform well in terms of Normalized Cost and Normalized
Inference Time, meaning lower costs and shorter inference
times. However, the model’s accuracy and capture of user
intent are somewhat lacking. As for the GRAMMAR and
KOR restrictive methods, although LLMs can achieve the
highest values in the Format metric, their output content lacks
interpretability and cannot be used for intent data modeling.

From the perspective of different model methods, in terms
of overall performance, Qwen-32B and Deepseek-v3 perform
relatively closely. Both can reach high values in Explain
and Accuracy, and outperform ChatGPT-4o in terms of For-
mat and Accuracy. Nevertheless, ChatGPT-4o and Deepseek-
v3 have lower costs and shorter inference times under the



8

Prompt[ZERO] condition, while Qwen-32B shows relatively
stable performance in terms of cost and inference time under
different conditions.

Therefore, it can be summarized that adopting the
Prompt[FEW] condition generally helps to improve various
performance metrics of the models, and using Deepseek-v3
offers the most stable performance.

C. Ablation Study

This task can be formulated as a text generation task. In the
experiment, we first execute the algorithm for 200 rounds to
collect sufficient data for predicting the user’s intent. We use
the BLEU score to evaluate the similarity between the intent
predicted by the Transformer and the real intent.

We proposed three different baselines:
• NLU: Utilizes only features from the user’s historical

intent data.
• NLU+V Net: Utilizes features from the user’s historical

intent data and fuses features generated by an extra graph
convolutional network on Visual net configuration.

• NLU+P Net: Utilizes features from the user’s historical
intent data and fuses features generated by an extra graph
convolutional network Physical net configuration.

Results Analysis: As shown in Fig. 3, the NLU+V Net
method converges rapidly and achieves the highest BLEU
score, indicating successful prediction of user intent based on
historical intents and virtual network configuration. In contrast,
the NLU+P Net method showed the lowest BLEU score and
exhibited instability during training. We posit that fusing
physical network configuration features does not strengthen
the representation of the user’s intent features.

Fig. 3: Intent Prediction Performance Comparison.

VI. CONCLUSION AND FUTURE WORK

This paper has introduced a novel proactive intent-driven
SFC placement framework specifically designed for the chal-
lenges of dynamic IoT networks. By integrating Transformer-
based intent prediction, LLM-driven intent translation, and
Reinforcement Learning for dynamic SFC deployment, our
approach moves beyond the limitations of current reactive
methods. The proposed framework offers significant advan-
tages by enabling the network to anticipate future demands,
interpret complex human intents with greater flexibility, and
make real-time, adaptive placement decisions. This synergy

leads to enhanced resource utilization, improved SFC accep-
tance rates, and a more resilient network infrastructure capable
of meeting stringent QoS requirements in highly volatile IoT
environments. Our integrated methodology promises a more
autonomous and efficient paradigm for managing network
services.

For future work, we plan to extend our research in sev-
eral directions. Firstly, we aim to explore the development
of more sophisticated Transformer architectures for intent
prediction, potentially incorporating multi-modal data (e.g.,
environmental sensor readings, social media trends) to further
enhance prediction accuracy and lead time. Secondly, we will
investigate methods for real-time fine-tuning and continuous
learning for the LLM, allowing it to adapt to evolving intent
expressions and new service requirements without extensive
retraining. Thirdly, we intend to explore multi-agent RL ap-
proaches to handle distributed SFC placement decisions across
a large-scale, hierarchical IoT network, considering inter-
SFC dependencies and potential conflicts. Finally, we plan to
conduct extensive evaluations in a real-world IoT testbed to
validate the framework’s performance under authentic traffic
conditions and assess its scalability and robustness in practical
deployments.
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